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Conditions are examined permitting the pressure gradient appearing in a porous catalyst sustaining 
multicomponent diffusion of a gas mixture accompanied by chemical reaction to be neglected. 
Deviations are computed of the sum of mole fractions from unity for selected typical cases 
as a measure of error commited by neglecting the forced flow. 

With the exception of the simplest systems the majority of reactions of industrial importance 
leads to several products. Maximum selectivity or maximum yield of the desired product in these 
cases have usually the highest priority overriding criteria for maximum conversion of reactants. 

An important step in the study of mass transport in porous catalysts as affecting selectivity 
of a system of heterogeneous catalytic reactions is adequate description of the flow of multi­
component reaction mixture incorporating flow terms into the differential mass balances of react­
ng species. The problem of a thorough description of the flow of multi component mixture 
n a system undergoing several chemical reactions has not been systematically studied. Descrip­
tion of mass transport is usually reduced to the case of the diffusional flux of the reaction mixture 
with the diffusion being either of purely Knudsen or molecular type with mutually independent 
and constant (independent of ·the concentration of the species) appropriate effective diffusion 
coefficients of the species. The diffusion of individual species is then described by the Fick law 
in the form for a binary mixture. These simplifications, of course, are at odds with the majority 
of real systems where diffusion takes place in the transition region while the diffusion coefficients 
are functions of concentrations of individual species l

. The general expression for the flux of a multi­
component mixture in a porous medium must then incorporate, apart from the adequate expres­
sion for the diffusional flux, also a term representing the contribution of the forced (Darcy) 
flow due to the pressure gradient within the pores l - 3. Solution of such differential mass balances 
with general flow terms is naturally difficult. From this standpoint it is important to explore 
possible avenues for a simplification of the complete model in order to reduce the set of balance 
equations to a form facilitating numerical solution 

The aim of this work, relating to our previous communication2
, has been to assess 

the effect of the forced flow and single out conditions under which this contribution 
may be neglected. 
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The Mass Balance in a Catalyst Particle 

A general q-component system supporting the set of m reactions may be described 
under the steady and isothermal conditions by the set of differential equations which 
in the direction of e.g. z axis takes the form 

dN/dz = ar. (1) 

The flux of a muiticomponent mixture in an isothermal medium may be expressed 
generally as a sum of the contributions of the diffusional flux and the forced flow 

(2) 

i.e. after substituting for individual contributions2 by 

N = -c [j)(dyJdz) - yB(dc/dz). (3) 

The matrix of effective diffusional coefficients [j) is defined by 

(4) 

The meaning of the inverse matrix F becomes clear from the following equation 

-c(dy/dz) = FNd
, (5) 

representing a matrix notation of the set of differential equation for steady st~te ­
diffusion of a multicomponent mixture in the transition region in a isothermal and 
isobaric particle. The elements of the matrix F for diffusion in the transition region 
are defined4 by Eqs (6) and (7) 

=/=j 

1 q Yl 
F jj =--+ L:-­

(e/t) .@Kj :;i (e/t).@\j 

(6) 

(7) 

The form of these equations originates from the model of a bundle of equal-radius 
capillaries with adjustable parameters Rand (elt). 

Symbol y in the second term on the right hand side of Eq. (3). expressing the con­
tribution of the fGrced flow, is a diagonal matrix of mole fractions of a gas mixture 
and 8 is a vector of permeability coefficientss. These coefficients are generally 
functions of the mean pore diameter R, pressure P and mole fractions Yj. 
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On expressing the flow term from Eq. (3) the set of balance equations takes the 
following form 

d/dz( -c IG dy/dz - yB dc/dz) = ar. (8) 

The mole fractions of individual species are further constrained by 

q 

LYi = 1. (9) 
i=1 

The set of Eqs (8) and (9) is then solved with the boundary conditions 

z = L Yi = Yis 

C = Cs i = 1,2, ... , q 

z = 0 dyJdz = 0 (10) 

for (q + 1) unknows Yi (i = 1,2, ... , q) and c. 

Clearly, solution of this boundary value problem, which owing to the form of the 
left hand side of Eq. (8) is considerably complicated, could be considerably facilitated 
if the contribution of the forced flow were neglected while still satisfying the constraint 
(9). In such case the description of the flow of the reaction mixture would reduce 
to the diffusional contribution while the overall concentration c could be regarded 
constant along the pore length. In case of validity of Eq. (9) one equation in the set 
(5), describing diffusion of a multicomponent reaction mixture is alwas a linear 
combination of the others. The determinant of the matrix F then vanishes and corres­
ponding inverse matrix IG of the diffusional coefficients cannot be found. The bound­
ary value problem (8) - (10) changes under such conditions to a simultaneous solution 
of(q - 1) independent equations of the set (5). 

(q-l) 

-c dyJd z = L FijNj' i = 1,2, .. . , (q - 1) (11) 
j = 1 

with the balance equations, which for a catalyst in the form of an infinite slab may be 
written as 

m 

dN)dz = LQjkrk, j = 1,2, ... ,(q -1). (12) 
k= 1 

The boundary conditions for the solution of the set (11) - (12) are as folIo.ws 

z = L Yi = )l is 

z = 0 N j = 0 
i,j = 1,2, ... (q - 1) (13) 
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Concentration of the remaining q-th component is fi xed by the constraint (9). Further, 
(q - 111) fluxes of non-key components may be eliminated from the set (11)-(13) 
using stoichiometric relations to express these fluxes as functions of In key compo­
nents. The functional relationship is 

(14) 

where Nk and Nn stand for the parts of the flux vector N = (N!> N 2 , ••• , Nqy, 
containing the fluxes of the key and the non-key components 

(15) 

(16) 

Analogously, a k and an are parts of the matrix of stoichiometric coefficients containing 
the coefficients of the key and the non-key components2. 

Conditions for Neglecting the Forced Flow 

Conditions (9) may be written in a differential form as 

t dYi /dz = O. 
; ; 1 

(17) 

From the Stefan- Maxwell relations for the diffusional flux (5) it is apparent that in 
order to satisfy the last equation we must have 

q q 

INj I Fij = O. (i8) 
j ; l ;; 1 

Since generally we have N j i= 0 there follows from Eq . (18) that the constraints (9) 
or (17) are equivalent to 

q 

IFjj = 0, (19) 
j ; 1 

or, after expressing Fij from the definitions (6) and (7) to 

l/DKj = o. (20) 

The last equation holds accurately only in the region of continuum, where DKj -+ 00 . 

In a porous medium, where DKj assumes always finite values, Eq. (20) is never 
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fulfilled precisely. Thus, generally speaking, the contribution of the forced flow in 
a porous medium can never be neglected , not even in region of molecular diffusion , 
where only 1/ DKj ~ Dij • It may be expected though that conditions exist when the 
contribution of the forced flow to the net flow of the reaction mixture is negligible 
from the practical point of view. It thus seems practicable to find such conditions. 

If in the description of the flow of a multicomponent mixture through a porous 
medium the contribution of the forced flow is unjustly neglected, the sum of mole 
fractions of individual species in an arbitrary point of a porous medium, obtained 
by solving the simplified balance equations, deviates from unity. Provided the pres­
sure gradient within the pores is not large, it may be anticipated 1 that the forced 
flow induced by this gradient is proportional to the deviation of the sum of mole 

q 

fractions from unity (1 - L yJ For a given heterogeneous catalytic reaction the 
q i=1 

quantity (1 - I Yi) provides a measure of the effect of the contribution of the forced 
i=1 

flow and eventually a criterion for the conditions under which the effect of the forced 
flow may be safely neglected. 

Assessment of the Effect of the Forced Flow on a Consecutive Heterogeneous 
Catalytic Reaction 

The calculation of the concentration profiles prevailing in a catalyst particle sup­
porting a reaction may be based on Eqs (11)-(13), which, however, must be formu­
lated for all q components for we cannot assume validity of Eq. (9) a priori. As noted, 
the deviation of the sum of computed mole fractions of individual species from unity 
is a measure of the error committed by neglecting the pressure gradient in the porous 
particle. This error depends firstly on the mean pore diameter of the catalyst and on 
the ratio of the reaction rate constants of individual reactions. To illustrate the situa­
tion a model reaction has been chosen exhibiting a change of the number of moles 
while the species diffusing in the porous medium have different molecular weights. 
These features has e.g. consecutive trimerisation of ethylene following the scheme 

(A) 
(B) 

In this system we have chosen A1 , A2 for the key components. The balance equations 
(12) for the fluxes of the key components and the stoichiometric relationship (14) 
for the non-key component A3 may be written for the schemes (A) and (B) as 
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(23) 

Eqs (21)-(23) are dimensionless; the dimensionless flux is l1i = LNJcDKi , the 
Thiele modulus M = LJr1S/cDK " x = z/L, the dimensionless rate equations 
Qi = rdrls· After substitution r 1 = k'YI' r2 = k2YIY3 and the ratio of the Knudsen 
diffusion coefficients !?)KI/!?)K3 = J2, !?)Kt!!?)K2 = J3 we obtain 

(24) 

(25) 

(26) 

where the selectivity coefficient, s, has been defined as the ratio of the rate constants 
of both reactions, namely s = k l / k2 • The diffusion equation (11) for all species of the 
reaction system in the dimensionless form reads 

where LI i designates the ratios of the Knudsen and the binary diffusion coefficient~ 

Lli = !?)Kl/!?)12' Ll2 = !?)K2/!?)12' Ll3 = !?)Kl/!?)13' Ll4 = !?)K3/!?)13' LIs = !?)K2/!?)23' 

Ll 6 = :0K3 / !?)23 . The initial and the boundary conditions are 

(30) 

(31) 

The calculation of mole fractions in a particle from Eqs (24)-(29) with the boundary 
conditions (30) and (31) represents a boundary value problem for the set of ordinary 
first-order non-linear differential equations. This set was solved by the shooting 
method6

• Profiles of mole fractions were computed for various mean pore diameters 
and various selectivity factors, s, at constant composition of the ambient reaction 
mixture: Yls = 0·9, Yls = 0·004 and Y3s = 0·096, and are shown in Figs 1 and 2. 
The figures show also the deviations of the sum of mole fractions LYi from unity. 
It is apparent that maximum deviations occur in particle's center, i.e. at x = 0 for 
in this point the neglected pressure gradient becomes manifest most. In narrow pores 
with prevailing Knudsen type diffusion the deviations of LYi from unity are largest, 
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which is in accord with Eq. (19). In this case it is permissible to neglect the terms 
containing ratios of the diffusion coefficients AI in Eqs '(27)-(29) for Ai -+ O. These 
equations thus change to ones analogous to the Fick law. For the same mean pore 
diameter the error committed by neglecting the forced flow may be influenced by the 
selectivity factor, s. If the rate of the first reaction is much higher than that of the se­
cond, i.e. for high s, the deviations from unity are smaller as the magnitude of the 
pressure gradient in the particle influences only the first reaction (A) with a smaller 
mole change than that corresponding to the overall trimerisation (A) and (B). The 

10,---.---... ----,--;-71:=:=::;::===--,1·0 
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02 
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FIG. 1 

Mole Fraction Profiles in a Catalyst Particle; Effect of Mean Pore Radius 
s = 2'5; a M2 8'715, R 5 nm; b M2 0'8715, R 50 nm; c M2 0'08715, R 500 nm. 

0'6 Y, 

0·2 

FIG. 2 

Mole Fraction Profiles in a Catalyst Particle; Effect of Selectivity Factor 
R 500 nm, M2 0'08715; as 0'25; b s 1; c s 2'5. 
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magnitude of the quantity 1 - LYi , calculated for the point x = 0 for variolls mean 
pore radii and selectivity factors , s, is shown in Table I. From this table it is apparent 
that the deviations 1 - LYi, independently of the selectivity, are considerable even 
in catalysts with relatively wide pores (50 nm) typical for commonly used catalysts. 
Only extremely large pores (500 nm) exhibit negligible deviations of the sum of mole 
fractions from unity. 

In the derivation of the balance equations it was assumed that mole fractions of 
the three components were mutually independent. Setting aside Eq. (9) from the ba­
lance set permitted on the one hand assessment of the error committed by neglecting 
the forced flow, but, on the other hand, lead to incorrect values of the effectiveness 
factor. While the errors due to neglected forced flow show mostly in narrow pores, 
the errors in the effectiveness factor, committed by omiting Eq. (9), become manifest 
most in wide pores as the terms with AI on the right hand sides of Eqs (27)-(29) 
playa role increasingly large with R. On defining the effectiveness factor as the integral 
mean of the true reaction rate divided by the reaction rate at the conditions prevailing 
on particle's surface, the expression for the effectiveness factors of the reactions (A) 
and (B) may be computed from 

(32) 

'7z 

The effectiveness factors of reactions (A) and (B), computed from these relations for 
the mean pore diameter R = 511m and the selectivity factor s = 2·5 (Table I) are 

TABLE I 

Deviations of the Sum of Mole Fractions from Unity (l - kY) for Various Mean Pore Radii 
and Selectivity Factors at x = 0 

R,nm 

50 
500 

0·25 

0·058 

1·0 

0'509 
0 '251 
0 ·040 

1'43 

0·469 

2·5 

0'407 
0'186 
0'027 
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IJ 1 = 0·226 and tl2 = 0·758. These values may be regarded as correct because in 
narrow pores the balance equations (24)-(26), together with the diffusion equations 
degenerated to the Fick law (for L1 i -+ 0), formally describe the limiting case of the 
complete balance incorporating both the diffusional and forced flow within the par­
ticle. Substituting the mole fractions i.I1 Eqs (24)-(26) by molar concentrations Ci , 

these equations correspond to the balances (8) in the Knudsen region and the resulting 
concentration profiles are identical with the profiles of mole fractions calculated e.g. 

in Fig. la. The farther away from the Knudsen region the greater the error involved 
in the computed mole fraction profiles and the effectiveness factors computed from 
these profiles using the definition equations (32) and (33). 

The results of this work have confirmed that in real systems supporting hetero­
geneous catalytic reactions the general balance (2) should be used. The pressure 
gradient within the particle affects the mole fractions profiles less in catalysts with 
larger pores and with higher selectivity factor. Nevertheless, it is not possible to 
ascertain whether the neglected forced flow shall cause considerable errors in the 
balances. 

LIST OF SYMBOLS 

aij stoichiometric coefficient of component Ai in the j-th reaction, element of 
matrix a 

Aj components of the reaction mixture 
B j permeability of individual components, element of vector B 
c total concentration 
Ci molar concentration 
[D matrix defined by Eq. (4) 
!0jj binary diffusion coefficient 
~Ki Knudsen diffusion coefficient dependent on R 
Fij elements of matrix F 
L characteristic particle size 
M Thiele modulus 
m number of reactions 
N j flux of individual species, element of vector N 
nj dimensionless flux 
q number of components of the system 
R mean pore radius 
rj rate of the j-th reaction, element of vector r 
s selectivity factor 
x independent variable 
Yi mole fraction, element of vector or diagonal matrix y 
z coordinate 
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LI i dimensionless coefficient 
porosity 

I'/j effectiveness factor of j-th reaction 
Qj dimensionless rate of j-th reaction 

tortuosity 
ni mole fraction on the surface 

Subscripts 

i , j, I components 
surface value 

d diffusional (flux) 
f forced (flUX) 
k key (flux) 
n non-key (flux) 
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